兰州场地装修网络社区

活在AI时代

只看楼主 收藏 回复
  • - -
楼主
客服服务在数字经济时代,大平台正在开采数字化的石油——大数据,而开采出来的大数据则用于人工智能(AI),因为AI会是数字化时代的电。

【编者按】有人“DANCE”这个词来形容AI主导的数字经济时代。“DANCE”是五个英文词的缩略语,分别是大数据(data)、算法/人工智能(al-gorithms/AI)、网络(networks)、云(cloud)以及硬件呈指数级的性能改善(exponential improvements in hard-ware)。如何理解AI?如何看待AI的未来发展?AIQ又是什么?本文对AI时代的众多疑问做出了回答。

本文转载自经济观察报,原作者为吴晨,为《经济学人·商论》执行总编辑,文章经整理编辑,供业内人士参考。


《经济学人》去年出了一期很经典的封面,封面里将全球各大高科技平台企业如谷歌、亚马逊之许描绘成正在采油的钻井,寓意很明显,在数字经济时代,大平台正在开采数字化的石油——大数据,而开采出来的大数据则用于人工智能(AI),因为AI会是数字化时代的电。

也有人用狂歌热舞(DANCE)这个词来形容AI主导的数字经济时代。DANCE是五个英文词的缩略语,分别是大数据(data)、算法/人工智能(al-gorithms/AI)、网络(networks)、云(cloud)以及硬件呈指数级的性能改善(exponential improvements in hard-ware)。其实DANCE的五点缺一不可,恰恰是大量数据产生,算法不断更新,移动互联和未来的物联网让连接无所不在,云端让数据的存储和使用更方便,再加上硬件的不断更新升级,推动了这样一个科技以几何级数增长变化的时代。而数字经济时代的五点要素中,AI是贯穿始终的应用技术,也成为当下各个领域跨界研究的显学。

要理解AI,除了从技术角度出发,了解机器学习神经网络等前沿技术的发展之外,也需要站在更广阔领域从多种不同视角去观察和分析,最近有四本书从不同的角度剖析了AI的特点,联系起来勾勒出清晰的AI发展与应用的图谱。这四本书分别是从数字工程师的视角看待AI发展的《AIQ》、经济学家分析AI作为一项通用技术将给商业带来改变的《预测机器》(Prediction Machine)、咨询师眼中AI当下的应用场景《人+机器》(Human + Machine),以及目前在国内很畅销的麻省理工学院物理学教授泰格马克畅想AI未来的《生命3.0》。

把商业问题变成预测问题

之所以说AI是未来的电,因为AI和电力一样,将是改变工作和生活方方面面的一项通用技术。如果用简单的供求关系来分析,当一项技术变得够便宜,就会带来足够多的新应用;此外当一项技术变得够便宜之后,跨界的应用也会不断兴起。电力作为工业经济时代的通用技术就是如此。

1800年,退休的美国首任总统华盛顿的别墅一年需花费一万多美元购买蜡烛照明。100年之后,同样一栋别墅一年的照明费用只有100年前的四百分之一。这是新技术变得日益便宜之后带来的普及效果。华盛顿时代只有富人才能晚上点得起蜡烛夜读,电力普及时代任何一个大都市的家庭都不会为电费而烦恼。

《预测机器》的三位作者都是来自多伦多大学管理学院的教授,他们认为AI就是下一个通用技术,而AI越来越便宜,带来最直接的效果就是“预测”的成本将越来越低,从而给商业流程和商业模式带来全新的变化,就好像100多年前电的普及一样。

如果说AI的最大特点是更好地解决预测问题,思考商业模式创新就需要把商业面临的各种实际问题转变成预测问题来思考。比如说,无人驾驶是不是可以看做预测问题?又比如说,翻译是不是预测问题?

回答都是肯定的。在AI看来,无人驾驶就是怎样去培养机器能够更好地去预测一个经验丰富的老司机如何应对各种复杂多变的道路环境。换言之,如果机器能够很好地学会老司机适应各种不同环境应对道路上各种突发情况的能力,那么就能很好地解决无人驾驶问题。这也是为什么共享出行企业能在自动驾驶领域有所作为的原因,因为可以捕捉大量司机的驾驶行为,并以此培养无人驾驶AI。

翻译也可以看做一种预测问题。AI出现之前的机器翻译,强调的是如何自上而下,从规则的角度去让机器理解语法,也是逐词对应的翻译。AI处理翻译问题,同样可以转化成预测问题:预测一个资深的翻译,会怎么翻译处理一个词、一段话、一篇文章。从词上升到句子,上升到段落,还要处理语境,这样机器处理语言的方式就和以前完全不同,机器翻译的准确度也会显著提升。

举两个更好的预测可能改变流程或者商业模式的例子。

在医学领域,X光和CT这样的检查,是帮助医生去判断病人是否有肿瘤的重要依据,当医生无法确定肿瘤是良性还是恶性的时候,需要对病灶做生理切片检查的小手术。如果AI分析检查片子的能力增强,预测肿瘤的准确度提高,手术的必要性会越来越低。

更准确地预测也可能颠覆整个电商领域的商业模式。如果电商可以准确预测消费者的需求,商业模式可以有什么变化?目前,电商已经可以比较准确地预测一定区域内用户对一些大宗商品比如说肥皂或者洗衣粉的需求,并因此可以在靠近社区的仓库中提前布货。未来,如果预测的准确度可以进一步提升,像亚马逊这样的电商巨头很可能不再需要用户在线或者在手机上搜索下单,而是直接把用户需要的商品送到客户家里。因为准确度非常高,配送十件商品至少有九件满足客户的需求,亚马逊只要做好一件商品的退货服务即可。

人人都要培养AIQ

如果说IQ是用来测量一个人的智商,EQ用来评价一个人的情商,那么AIQ就是评价一个人对人工智能的认知。《AIQ》的两位作者都是数字工程师,他们认为要适应未来“人+机器”的工作场景,每个人都需要培养AIQ,提升对AI的认知,以便更容易适应科技快速迭代改变的未来。此外,人类还需要有能力去监督AI,在“人+机器”的协作中,成为关键的一环,要做到这一点的前提也必须对AI和数据科学有基本的认知。

培养AIQ首先要建立对当下AI发展的认知。很多人把AI看得神秘莫测,的确现在AI可以做很多神奇的事情,比如说图像识别、语音识别、辅助驾驶、自动翻译等等,在一些情况下做的比大多数人还要好。但目前的AI仍然并不具备人类的那种聪明,它只听得懂一种语言——数字。

AI可以处理各种信息,只要输入的是数字就行。所以AI系统要能起作用,需要将各类不同输入都变成可以处理的数字语言,数据工程师把这种过程称为“特征工程学”,比如说把图像和语言的数字特征提取出来,变成机器听得懂的语言。

以自然语言识别为例。以前处理语言的思路是自上而下的编程思路,希望灌输给机器所有的语言规则,同时穷尽任何特例。结果几十年语言识别都没有大进步,因为语言其实太随意、太复杂了。AI的自然语言识别,完全走了另外一条路,让机器做最擅长


举报 | 1楼 回复

友情链接